ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
વધુમાં વધુ બે કાંટા મળે.
When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$
$\therefore$ Accordingly, $n ( S )=8$
It is known that the probability of an event $A$ is given by
$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$
Let $J$ be the event of the occurrence of at most $2$ tails.
Accordingly, $J=\{H H H,\, H H T , \,H T H , \,T H H , \,H T T , \,T H T , \, T T H \} ~$
$\therefore P(J)=\frac{n(J)}{n(S)}=\frac{7}{8}$
બે પાસાને ઉછાળવામાં આવે છે.જો બે પાસા પરના અંકોનો સરવાળો સાત થાય તેની સંભાવના મેળવો.
સરખી રીતે ચીપેલાં $52$ પત્તાંની એક થોકડીમાંથી યાદચ્છિક રીતે એક પતું ખેંચવામાં આવે છે.
પતું કાળા રંગનું ન હોય.
તો ખેંચવામાં આવેલાં પત્તાંની સંભાવના શોધો.
ત્રણ સિક્કા એકવાર ઉછાળવામાં આવે છે. નીચેની ઘટનાઓનું વર્ણન કરો :
પરસ્પર નિવારક છે, પરંતુ નિઃશેષ ન હોય તેવી બે ઘટનાઓ
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
નીચે આપેલ ઘટનાઓ વર્ણવો
$B$ અને $C$
એક વૃદ્ધ વ્યક્તિ ટેલીફોન નંબર જોડતાં છેલ્લા બે અંકો ભૂલી જાય છે, તે યાર્દચ્છિક રીતે આ ભિન્ન અંકો જોડે છે. તો સાચો નંબર જોડાવાની સંભાવના કેટલી થાય ?